Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Chembiochem ; 23(18): e202200303, 2022 09 16.
Article in English | MEDLINE | ID: covidwho-1958520

ABSTRACT

Antibodies recognize their cognate antigens with high affinity and specificity, but the prediction of binding sites on the antigen (epitope) corresponding to a specific antibody remains a challenging problem. To address this problem, we developed AbAdapt, a pipeline that integrates antibody and antigen structural modeling with rigid docking in order to derive antibody-antigen specific features for epitope prediction. In this study, we systematically assessed the impact of integrating the state-of-the-art protein modeling method AlphaFold with the AbAdapt pipeline. By incorporating more accurate antibody models, we observed improvement in docking, paratope prediction, and prediction of antibody-specific epitopes. We further applied AbAdapt-AF in an anti-receptor binding domain (RBD) antibody complex benchmark and found AbAdapt-AF outperformed three alternative docking methods. Also, AbAdapt-AF demonstrated higher epitope prediction accuracy than other tested epitope prediction tools in the anti-RBD antibody complex benchmark. We anticipate that AbAdapt-AF will facilitate prediction of antigen-antibody interactions in a wide range of applications.


Subject(s)
Antibodies , Antigens , Antibody Specificity , Binding Sites, Antibody , Epitopes/chemistry
2.
Viruses ; 14(11)2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2116033

ABSTRACT

The recent outbreak of Monkeypox virus requires the development of a vaccine specifically directed against this virus as quickly as possible. We propose here a new strategy based on a two-step analysis combining (i) the search for binding domains of viral proteins to gangliosides present in lipid rafts of host cells, and (ii) B epitope predictions. Based on previous studies of HIV and SARS-CoV-2 proteins, we show that the Monkeypox virus cell surface-binding protein E8L possesses a ganglioside-binding motif consisting of several subsites forming a ring structure. The binding of the E8L protein to a cluster of gangliosides GM1 mimicking a lipid raft domain is driven by both shape and electrostatic surface potential complementarities. An induced-fit mechanism unmasks selected amino acid side chains of the motif without significantly affecting the secondary structure of the protein. The ganglioside-binding motif overlaps three potential linear B epitopes that are well exposed on the unbound E8L surface that faces the host cell membrane. This situation is ideal for generating neutralizing antibodies. We thus suggest using these three sequences derived from the E8L protein as immunogens in a vaccine formulation (recombinant protein, synthetic peptides or genetically based) specific for Monkeypox virus. This lipid raft/ganglioside-based strategy could be used for developing therapeutic and vaccine responses to future virus outbreaks, in parallel to existing solutions.


Subject(s)
Monkeypox virus , Viral Proteins , Epitopes/chemistry , Gangliosides , Monkeypox , Monkeypox virus/chemistry , Viral Proteins/chemistry
3.
Cell Rep ; 41(3): 111512, 2022 10 18.
Article in English | MEDLINE | ID: covidwho-2060516

ABSTRACT

The SARS-CoV-2 Omicron variant evades most neutralizing vaccine-induced antibodies and is associated with lower antibody titers upon breakthrough infections than previous variants. However, the mechanism remains unclear. Here, we find using a geometric deep-learning model that Omicron's extensively mutated receptor binding site (RBS) features reduced antigenicity compared with previous variants. Mice immunization experiments with different recombinant receptor binding domain (RBD) variants confirm that the serological response to Omicron is drastically attenuated and less potent. Analyses of serum cross-reactivity and competitive ELISA reveal a reduction in antibody response across both variable and conserved RBD epitopes. Computational modeling confirms that the RBS has a potential for further antigenicity reduction while retaining efficient receptor binding. Finally, we find a similar trend of antigenicity reduction over decades for hCoV229E, a common cold coronavirus. Thus, our study explains the reduced antibody titers associated with Omicron infection and reveals a possible trajectory of future viral evolution.


Subject(s)
COVID-19 , Viral Vaccines , Mice , Animals , Spike Glycoprotein, Coronavirus , Neutralization Tests , Antibodies, Viral/chemistry , SARS-CoV-2 , Antibodies, Neutralizing/chemistry , Epitopes/chemistry
4.
Front Immunol ; 13: 995412, 2022.
Article in English | MEDLINE | ID: covidwho-2043452

ABSTRACT

Anti-COVID antibody therapeutics have been developed but not widely used due to their high cost and escape of neutralization from the emerging variants. Here, we describe the development of VHH-IgA1.1, a nanobody IgA fusion molecule as an inhalable, affordable and less invasive prophylactic and therapeutic treatment against SARS-CoV-2 Omicron variants. VHH-IgA1.1 recognizes a conserved epitope of SARS-CoV-2 spike protein Receptor Binding Domain (RBD) and potently neutralizes major global SARS-CoV-2 variants of concern (VOC) including the Omicron variant and its sub lineages BA.1.1, BA.2 and BA.2.12.1. VHH-IgA1.1 is also much more potent against Omicron variants as compared to an IgG Fc fusion construct, demonstrating the importance of IgA mediated mucosal protection for Omicron infection. Intranasal administration of VHH-IgA1.1 prior to or after challenge conferred significant protection from severe respiratory disease in K18-ACE2 transgenic mice infected with SARS-CoV-2 VOC. More importantly, for cost-effective production, VHH-IgA1.1 produced in Pichia pastoris had comparable potency to mammalian produced antibodies. Our study demonstrates that intranasal administration of affordably produced VHH-IgA fusion protein provides effective mucosal immunity against infection of SARS-CoV-2 including emerging variants.


Subject(s)
COVID-19 , Immunoglobulin A , SARS-CoV-2 , Single-Domain Antibodies , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Viral/pharmacology , Epitopes/chemistry , Humans , Immunoglobulin A/pharmacology , Immunoglobulin G , Mice , Single-Domain Antibodies/pharmacology , Spike Glycoprotein, Coronavirus
5.
Science ; 377(6607): 728-735, 2022 08 12.
Article in English | MEDLINE | ID: covidwho-1968212

ABSTRACT

The potential for future coronavirus outbreaks highlights the need to broadly target this group of pathogens. We used an epitope-agnostic approach to identify six monoclonal antibodies that bind to spike proteins from all seven human-infecting coronaviruses. All six antibodies target the conserved fusion peptide region adjacent to the S2' cleavage site. COV44-62 and COV44-79 broadly neutralize alpha- and betacoronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants BA.2 and BA.4/5, albeit with lower potency than receptor binding domain-specific antibodies. In crystal structures of COV44-62 and COV44-79 antigen-binding fragments with the SARS-CoV-2 fusion peptide, the fusion peptide epitope adopts a helical structure and includes the arginine residue at the S2' cleavage site. COV44-79 limited disease caused by SARS-CoV-2 in a Syrian hamster model. These findings highlight the fusion peptide as a candidate epitope for next-generation coronavirus vaccine development.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Broadly Neutralizing Antibodies , COVID-19 , Epitopes , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/chemistry , COVID-19 Vaccines/immunology , Epitopes/chemistry , Epitopes/immunology , Humans , Peptides/immunology , Protein Conformation, alpha-Helical , Protein Domains , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology
6.
J Virol ; 96(15): e0055822, 2022 08 10.
Article in English | MEDLINE | ID: covidwho-1962090

ABSTRACT

As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, several variants of concern (VOCs) have arisen which are defined by multiple mutations in their spike proteins. These VOCs have shown variable escape from antibody responses and have been shown to trigger qualitatively different antibody responses during infection. By studying plasma from individuals infected with either the original D614G, Beta, or Delta variants, we showed that the Beta and Delta variants elicit antibody responses that are overall more cross-reactive than those triggered by D614G. Patterns of cross-reactivity varied, and the Beta and Delta variants did not elicit cross-reactive responses to each other. However, Beta-elicited plasma was highly cross-reactive against Delta Plus (Delta+), which differs from Delta by a single K417N mutation in the receptor binding domain, suggesting that the plasma response targets the N417 residue. To probe this further, we isolated monoclonal antibodies from a Beta-infected individual with plasma responses against Beta, Delta+, and Omicron, which all possess the N417 residue. We isolated an N417-dependent antibody, 084-7D, which showed similar neutralization breadth to the plasma. The 084-7D MAb utilized the IGHV3-23*01 germ line gene and had somatic hypermutations similar to those of previously described public antibodies which target the 417 residue. Thus, we have identified a novel antibody which targets a shared epitope found on three distinct VOCs, enabling their cross-neutralization. Understanding antibodies targeting escape mutations, such as K417N, which repeatedly emerge through convergent evolution in SARS-CoV-2 variants, may aid in the development of next-generation antibody therapeutics and vaccines. IMPORTANCE The evolution of SARS-CoV-2 has resulted in variants of concern (VOCs) with distinct spike mutations conferring various immune escape profiles. These variable mutations also influence the cross-reactivity of the antibody response mounted by individuals infected with each of these variants. This study sought to understand the antibody responses elicited by different SARS-CoV-2 variants and to define shared epitopes. We show that Beta and Delta infections resulted in antibody responses that were more cross-reactive than the original D614G variant, but they had differing patterns of cross-reactivity. We further isolated an antibody from Beta infection which targeted the N417 site, enabling cross-neutralization of Beta, Delta+, and Omicron, all of which possess this residue. The discovery of antibodies which target escape mutations common to multiple variants highlights conserved epitopes to target in future vaccines and therapeutics.


Subject(s)
Antibodies, Viral , Cross Reactions , Epitopes , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/virology , Cross Reactions/immunology , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , Humans , Immune Evasion/immunology , Neutralization Tests , SARS-CoV-2/chemistry , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
7.
Front Immunol ; 13: 863831, 2022.
Article in English | MEDLINE | ID: covidwho-1924097

ABSTRACT

The emergence of SARS-CoV-2 variants that escape from immune neutralization are challenging vaccines and antibodies developed to stop the COVID-19 pandemic. Thus, it is important to establish therapeutics directed toward multiple or specific SARS-CoV-2 variants. The envelope spike (S) glycoprotein of SARS-CoV-2 is the key target of neutralizing antibodies (Abs). We selected a panel of nine nanobodies (Nbs) from dromedary camels immunized with the receptor-binding domain (RBD) of the S, and engineered Nb fusions as humanized heavy chain Abs (hcAbs). Nbs and derived hcAbs bound with subnanomolar or picomolar affinities to the S and its RBD, and S-binding cross-competition clustered them in two different groups. Most of the hcAbs hindered RBD binding to its human ACE2 (hACE2) receptor, blocked cell entry of viruses pseudotyped with the S protein and neutralized SARS-CoV-2 infection in cell cultures. Four potent neutralizing hcAbs prevented the progression to lethal SARS-CoV-2 infection in hACE2-transgenic mice, demonstrating their therapeutic potential. Cryo-electron microscopy identified Nb binding epitopes in and out the receptor binding motif (RBM), and showed different ways to prevent virus binding to its cell entry receptor. The Nb binding modes were consistent with its recognition of SARS-CoV-2 RBD variants; mono and bispecific hcAbs efficiently bound all variants of concern except omicron, which emphasized the immune escape capacity of this latest variant.


Subject(s)
COVID-19 , Single-Domain Antibodies , Animals , Cryoelectron Microscopy , Epitopes/chemistry , Humans , Mice , Pandemics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
8.
Comput Biol Med ; 146: 105633, 2022 07.
Article in English | MEDLINE | ID: covidwho-1850906

ABSTRACT

BACKGROUND: We investigated the evolutionary relationships, mutations, antigenic epitopes, and structural dynamics of the receptor-binding domain (RBD) of SARS-CoV-2, Omicron and other recently evolved variants. METHODS: The RBD of SARS-CoV-2 and its Omicron, Alpha, Beta, Gamma, Delta, and Mu variants were subjected to pairwise sequence matrix evaluation, antigenic epitope prediction, and phylogenetic relationship and structural dynamics analyses. RESULTS: The Omicron RBD contained 13-15 amino acid mutations, of which 12 were new and three conserved with other variants. In addition, two mutations found in the Alpha, Beta, Gamma, and Mu variants were not found in the Omicron RBD. The ultrametric clustering unweighted pair group method with arithmetic mean identified Omicron as a novel monophyletic class, but the neighbor-joining method clustered Omicron with Alpha and Delta variants. In the SARS-CoV-2 RBD, five main antigenic epitopes were predicted, and these epitopes were conserved across all SARS-CoV-2 variants tested. Surprisingly, the additional mutations in the Omicron variant increased the size of the expected antigenic sites in two of these antigenic epitopes. Molecular dynamics (MD) simulations revealed higher root-mean-square deviation in the Omicron RBD, greater residue fluctuation at residues 32-42 and 140-160, and increased solvent-accessible surface area. CONCLUSIONS: The Omicron RBD mutations indicate the variant is within a new phylogenetic class of SARS-CoV-2 and significantly impact RBD structure, conformation, and molecular dynamics. However, conserved anticipated antigenic sites may imply partial changes in receptor affinity and response to immune reactions. Omicron RBD binding with the angiotensin-converting enzyme 2 receptor was suggested to be weaker than the original SARS-CoV-2 binding in MD simulations.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/genetics , Epitopes/chemistry , Humans , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Molecular Dynamics Simulation , Mutation , Phylogeny , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins/metabolism
9.
Int J Mol Sci ; 23(6)2022 Mar 08.
Article in English | MEDLINE | ID: covidwho-1732071

ABSTRACT

Nanobodies provide important advantages over traditional antibodies, including their smaller size and robust biochemical properties such as high thermal stability, high solubility, and the ability to be bioengineered into novel multivalent, multi-specific, and high-affinity molecules, making them a class of emerging powerful therapies against SARS-CoV-2. Recent research efforts on the design, protein engineering, and structure-functional characterization of nanobodies and their binding with SARS-CoV-2 S proteins reflected a growing realization that nanobody combinations can exploit distinct binding epitopes and leverage the intrinsic plasticity of the conformational landscape for the SARS-CoV-2 S protein to produce efficient neutralizing and mutation resistant characteristics. Structural and computational studies have also been instrumental in quantifying the structure, dynamics, and energetics of the SARS-CoV-2 spike protein binding with nanobodies. In this review, a comprehensive analysis of the current structural, biophysical, and computational biology investigations of SARS-CoV-2 S proteins and their complexes with distinct classes of nanobodies targeting different binding sites is presented. The analysis of computational studies is supplemented by an in-depth examination of mutational scanning simulations and identification of binding energy hotspots for distinct nanobody classes. The review is focused on the analysis of mechanisms underlying synergistic binding of multivalent nanobodies that can be superior to single nanobodies and conventional nanobody cocktails in combating escape mutations by effectively leveraging binding avidity and allosteric cooperativity. We discuss how structural insights and protein engineering approaches together with computational biology tools can aid in the rational design of synergistic combinations that exhibit superior binding and neutralization characteristics owing to avidity-mediated mechanisms.


Subject(s)
Binding Sites , Molecular Docking Simulation , Molecular Dynamics Simulation , Single-Domain Antibodies/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Amino Acids , Antibody Affinity , Epitopes/chemistry , Epitopes/metabolism , Humans , Multiprotein Complexes/chemistry , Mutagenesis , Protein Binding , Protein Engineering , Protein Interaction Domains and Motifs , Single-Domain Antibodies/genetics , Single-Domain Antibodies/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
10.
Brief Bioinform ; 23(2)2022 03 10.
Article in English | MEDLINE | ID: covidwho-1713564

ABSTRACT

The development of autoimmune diseases following SARS-CoV-2 infection, including multisystem inflammatory syndrome, has been reported, and several mechanisms have been suggested, including molecular mimicry. We developed a scalable, comparative immunoinformatics pipeline called cross-reactive-epitope-search-using-structural-properties-of-proteins (CRESSP) to identify cross-reactive epitopes between a collection of SARS-CoV-2 proteomes and the human proteome using the structural properties of the proteins. Overall, by searching 4 911 245 proteins from 196 352 SARS-CoV-2 genomes, we identified 133 and 648 human proteins harboring potential cross-reactive B-cell and CD8+ T-cell epitopes, respectively. To demonstrate the robustness of our pipeline, we predicted the cross-reactive epitopes of coronavirus spike proteins, which were recognized by known cross-neutralizing antibodies. Using single-cell expression data, we identified PARP14 as a potential target of intermolecular epitope spreading between the virus and human proteins. Finally, we developed a web application (https://ahs2202.github.io/3M/) to interactively visualize our results. We also made our pipeline available as an open-source CRESSP package (https://pypi.org/project/cressp/), which can analyze any two proteomes of interest to identify potentially cross-reactive epitopes between the proteomes. Overall, our immunoinformatic resources provide a foundation for the investigation of molecular mimicry in the pathogenesis of autoimmune and chronic inflammatory diseases following COVID-19.


Subject(s)
Computational Biology/methods , Epitopes/chemistry , Epitopes/immunology , SARS-CoV-2/immunology , Software , Viral Proteins/chemistry , Viral Proteins/immunology , Algorithms , Cross Reactions/immunology , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class II/chemistry , Histocompatibility Antigens Class II/immunology , Models, Molecular , Molecular Mimicry , Neural Networks, Computer , Proteome , Proteomics/methods , Structure-Activity Relationship , Web Browser
11.
Signal Transduct Target Ther ; 7(1): 44, 2022 02 09.
Article in English | MEDLINE | ID: covidwho-1683982

ABSTRACT

The wide transmission and host adaptation of SARS-CoV-2 have led to the rapid accumulation of mutations, posing significant challenges to the effectiveness of vaccines and therapeutic antibodies. Although several neutralizing antibodies were authorized for emergency clinical use, convalescent patients derived natural antibodies are vulnerable to SARS-CoV-2 Spike mutation. Here, we describe the screen of a panel of SARS-CoV-2 receptor-binding domain (RBD) targeted nanobodies (Nbs) from a synthetic library and the design of a biparatopic Nb, named Nb1-Nb2, with tight affinity and super-wide neutralization breadth against multiple SARS-CoV-2 variants of concern. Deep-mutational scanning experiments identify the potential binding epitopes of the Nbs on the RBD and demonstrate that biparatopic Nb1-Nb2 has a strong escape-resistant feature against more than 60 tested RBD amino acid substitutions. Using pseudovirion-based and trans-complementation SARS-CoV-2 tools, we determine that the Nb1-Nb2 broadly neutralizes multiple SARS-CoV-2 variants at sub-nanomolar levels, including Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), Lambda (C.37), Kappa (B.1.617.1), and Mu (B.1.621). Furthermore, a heavy-chain antibody is constructed by fusing the human IgG1 Fc to Nb1-Nb2 (designated as Nb1-Nb2-Fc) to improve its neutralization potency, yield, stability, and potential half-life extension. For the new Omicron variant (B.1.1.529) that harbors unprecedented multiple RBD mutations, Nb1-Nb2-Fc keeps a firm affinity (KD < 1.0 × 10-12 M) and strong neutralizing activity (IC50 = 1.46 nM for authentic Omicron virus). Together, we developed a tetravalent biparatopic human heavy-chain antibody with ultrapotent and broad-spectrum SARS-CoV-2 neutralization activity which highlights the potential clinical applications.


Subject(s)
Antibodies, Neutralizing/pharmacology , Antibodies, Viral/pharmacology , Immunoglobulin Fc Fragments/pharmacology , Recombinant Fusion Proteins/pharmacology , SARS-CoV-2/drug effects , Single-Domain Antibodies/pharmacology , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/genetics , Antibodies, Viral/biosynthesis , Antibodies, Viral/genetics , Antibody Affinity , Enzyme-Linked Immunosorbent Assay , Epitopes/chemistry , Epitopes/immunology , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Humans , Immunoglobulin Fc Fragments/biosynthesis , Immunoglobulin Fc Fragments/genetics , Models, Molecular , Neutralization Tests , Protein Binding/drug effects , Protein Conformation , Protein Interaction Domains and Motifs , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , SARS-CoV-2/growth & development , SARS-CoV-2/immunology , Single-Domain Antibodies/biosynthesis , Single-Domain Antibodies/genetics , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
12.
J Struct Biol ; 214(1): 107839, 2022 03.
Article in English | MEDLINE | ID: covidwho-1668920

ABSTRACT

The antigenic epitope regions of pathogens (e.g., viruses) are recognized by antibodies (Abs) and subsequently cleared by the host immune system, thereby protecting us from disease. Some of these epitopes are conserved among different variants or subgroups of pathogens (e.g., Influenza (FLU) viruses, Coronaviruses), hence can be targeted for potential broad-neutralization. Here we report a web-based tool, Epitope Analyzer (EA), that rapidly identifies conformational epitope and paratope residues in an antigen-antibody complex structure. Furthermore, the tool provides the ways and means to analyze broadly neutralizing epitopes by comparing the equivalent epitope residues in similar antigen structures. The similarity in the epitope residues between (multiple) pairs of similar antigen molecules suggest the presence of conserved epitopes that can be targeted by broadly neutralizing antibodies. These details can be used as a guide in developing effective treatments, such as the design of novel vaccines and formulation of cocktail of broadly neutralizing antibodies, against multiple variants or subgroups of viruses. The web application can be freely accessed from the URL, http://viperdb.scripps.edu/ea.php.


Subject(s)
Antibodies, Neutralizing , Influenza, Human , Broadly Neutralizing Antibodies , Epitopes/chemistry , Humans
13.
Signal Transduct Target Ther ; 7(1): 23, 2022 01 25.
Article in English | MEDLINE | ID: covidwho-1655541
14.
Int J Biol Macromol ; 200: 428-437, 2022 Mar 01.
Article in English | MEDLINE | ID: covidwho-1633983

ABSTRACT

Nucleocapsid protein (N protein) is the primary antigen of the virus for development of sensitive diagnostic assays of COVID-19. In this paper, we demonstrate the significant impact of dimerization of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) N-protein on sensitivity of enzyme-linked immunosorbent assay (ELISA) based diagnostics. The expressed purified protein from E. coli is composed of dimeric and monomeric forms, which have been further characterized using biophysical and immunological techniques. Indirect ELISA indicated elevated susceptibility of the dimeric form of the nucleocapsid protein for identification of protein-specific monoclonal antibody as compared to the monomeric form. This finding also confirmed with the modelled structure of monomeric and dimeric nucleocapsid protein via HHPred software and its solvent accessible surface area, which indicates higher stability and antigenicity of the dimeric type as compared to the monomeric form. The sensitivity and specificity of the ELISA at 95% CI are 99.0% (94.5-99.9) and 95.0% (83.0-99.4), respectively, for the highest purified dimeric form of the N protein. As a result, using the highest purified dimeric form will improve the sensitivity of the current nucleocapsid-dependent ELISA for COVID-19 diagnosis, and manufacturers should monitor and maintain the monomer-dimer composition for accurate and robust diagnostics.


Subject(s)
COVID-19 Testing/methods , Coronavirus Nucleocapsid Proteins/chemistry , Enzyme-Linked Immunosorbent Assay/methods , SARS-CoV-2/immunology , Antibodies, Viral/immunology , Circular Dichroism , Coronavirus Nucleocapsid Proteins/biosynthesis , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/isolation & purification , Dimerization , Epitopes/chemistry , Escherichia coli/genetics , Humans , Immunoglobulin G/immunology , Models, Molecular , Phosphoproteins/biosynthesis , Phosphoproteins/chemistry , Phosphoproteins/immunology , Phosphoproteins/isolation & purification , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Sensitivity and Specificity
15.
Signal Transduct Target Ther ; 7(1): 18, 2022 01 19.
Article in English | MEDLINE | ID: covidwho-1639142

ABSTRACT

Emerging SARS-CoV-2 variants are the most serious problem for COVID-19 prophylaxis and treatment. To determine whether the SARS-CoV-2 vaccine strain should be updated following variant emergence like seasonal flu vaccine, the changed degree on antigenicity of SARS-CoV-2 variants and H3N2 flu vaccine strains was compared. The neutralization activities of Alpha, Beta and Gamma variants' spike protein-immunized sera were analysed against the eight current epidemic variants and 20 possible variants combining the top 10 prevalent RBD mutations based on the Delta variant, which were constructed using pseudotyped viruses. Meanwhile, the neutralization activities of convalescent sera and current inactivated and recombinant protein vaccine-elicited sera were also examined against all possible Delta variants. Eight HA protein-expressing DNAs elicited-animal sera were also tested against eight pseudotyped viruses of H3N2 flu vaccine strains from 2011-2019. Our results indicate that the antigenicity changes of possible Delta variants were mostly within four folds, whereas the antigenicity changes among different H3N2 vaccine strains were approximately 10-100-fold. Structural analysis of the antigenic characterization of the SARS-CoV-2 and H3N2 mutations supports the neutralization results. This study indicates that the antigenicity changes of the current SARS-CoV-2 may not be sufficient to require replacement of the current vaccine strain.


Subject(s)
Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , COVID-19 Vaccines/metabolism , COVID-19/prevention & control , Immunogenicity, Vaccine , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Substitution , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Antibodies, Viral/chemistry , Antibodies, Viral/genetics , Binding Sites , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/chemistry , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , Gene Expression , Humans , Immune Sera/chemistry , Influenza A Virus, H3N2 Subtype/chemistry , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Influenza Vaccines/metabolism , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/virology , Models, Molecular , Mutation , Neutralization Tests , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , SARS-CoV-2/chemistry , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Viral Pseudotyping
16.
MAbs ; 14(1): 2021601, 2022.
Article in English | MEDLINE | ID: covidwho-1625321

ABSTRACT

Coronavirus disease 2019, caused by SARS-CoV-2, remains an on-going pandemic, partly due to the emergence of variant viruses that can "break-through" the protection of the current vaccines and neutralizing antibodies (nAbs), highlighting the needs for broadly nAbs and next-generation vaccines. We report an antibody that exhibits breadth and potency in binding the receptor-binding domain (RBD) of the virus spike glycoprotein across SARS coronaviruses. Initially, a lead antibody was computationally discovered and crystallographically validated that binds to a highly conserved surface of the RBD of wild-type SARS-CoV-2. Subsequently, through experimental affinity enhancement and computational affinity maturation, it was further developed to bind the RBD of all concerning SARS-CoV-2 variants, SARS-CoV-1 and pangolin coronavirus with pico-molar binding affinities, consistently exhibited strong neutralization activity against wild-type SARS-CoV-2 and the Alpha and Delta variants. These results identify a vulnerable target site on coronaviruses for development of pan-sarbecovirus nAbs and vaccines.


Subject(s)
Antibodies, Viral/immunology , Antigens, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/genetics , Antibodies, Viral/metabolism , Antibody Affinity , Antibody Specificity , Antigen-Antibody Reactions , Antigens, Viral/chemistry , Antigens, Viral/genetics , Broadly Neutralizing Antibodies/genetics , Broadly Neutralizing Antibodies/metabolism , Crystallography, X-Ray , Epitopes/chemistry , Epitopes/immunology , Humans , Immunoglobulin Fragments/immunology , Molecular Docking Simulation , Monte Carlo Method , Neutralization Tests , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Domains , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
17.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: covidwho-1621333

ABSTRACT

The emergence of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major concern given their potential impact on the transmissibility and pathogenicity of the virus as well as the efficacy of therapeutic interventions. Here, we predict the mutability of all positions in SARS-CoV-2 protein domains to forecast the appearance of unseen variants. Using sequence data from other coronaviruses, preexisting to SARS-CoV-2, we build statistical models that not only capture amino acid conservation but also more complex patterns resulting from epistasis. We show that these models are notably superior to conservation profiles in estimating the already observable SARS-CoV-2 variability. In the receptor binding domain of the spike protein, we observe that the predicted mutability correlates well with experimental measures of protein stability and that both are reliable mutability predictors (receiver operating characteristic areas under the curve ∼0.8). Most interestingly, we observe an increasing agreement between our model and the observed variability as more data become available over time, proving the anticipatory capacity of our model. When combined with data concerning the immune response, our approach identifies positions where current variants of concern are highly overrepresented. These results could assist studies on viral evolution and future viral outbreaks and, in particular, guide the exploration and anticipation of potentially harmful future SARS-CoV-2 variants.


Subject(s)
COVID-19/virology , Epistasis, Genetic , Epitopes , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Viral Proteins/chemistry , Algorithms , Area Under Curve , Computational Biology/methods , DNA Mutational Analysis , Databases, Protein , Deep Learning , Epitopes/chemistry , Genome, Viral , Humans , Models, Statistical , Mutagenesis , Probability , Protein Domains , ROC Curve
18.
J Cell Mol Med ; 26(1): 25-34, 2022 01.
Article in English | MEDLINE | ID: covidwho-1570773

ABSTRACT

Transmission electron microscopy has historically been indispensable for virology research, as it offers unique insight into virus function. In the past decade, as cryo-electron microscopy (cryo-EM) has matured and become more accessible, we have been able to peer into the structure of viruses at the atomic level and understand how they interact with the host cell, with drugs or with antibodies. Perhaps, there was no time in recent history where cryo-EM was more needed, as SARS-CoV-2 has spread around the globe, causing millions of deaths and almost unquantifiable economic devastation. In this concise review, we aim to mark the most important contributions of cryo-EM to understanding the structure and function of SARS-CoV-2 proteins, from surface spikes to the virus core and from virus-receptor interactions to antibody binding.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , Antibodies, Viral/chemistry , COVID-19 Vaccines/chemistry , COVID-19/prevention & control , Receptors, Virus/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/biosynthesis , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/biosynthesis , Cryoelectron Microscopy , Epitopes/chemistry , Epitopes/immunology , Epitopes/metabolism , Humans , Models, Molecular , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Receptors, Virus/immunology , Receptors, Virus/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , SARS-CoV-2/ultrastructure , Serine Endopeptidases/chemistry , Serine Endopeptidases/immunology , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Virion/drug effects , Virion/pathogenicity , Virion/ultrastructure
19.
J Cell Biochem ; 123(2): 417-430, 2022 02.
Article in English | MEDLINE | ID: covidwho-1525444

ABSTRACT

Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a large number of mutations in its genome have been reported. Some of the mutations occur in noncoding regions without affecting the pathobiology of the virus, while mutations in coding regions are significant. One of the regions where a mutation can occur, affecting the function of the virus is at the receptor-binding domain (RBD) of the spike protein. RBD interacts with angiotensin-converting enzyme 2 (ACE2) and facilitates the entry of the virus into the host cells. There is a lot of focus on RBD mutations, especially the displacement of N501Y which is observed in the UK/Kent, South Africa, and Brazilian lineages of SARS-CoV-2. Our group utilizes computational biology approaches such as immunoinformatics, protein-protein interaction analysis, molecular dynamics, free energy computation, and tertiary structure analysis to disclose the consequences of N501Y mutation at the molecular level. Surprisingly, we discovered that this mutation reduces the immunogenicity of the spike protein; also, displacement of Asn with Tyr reduces protein compactness and significantly increases the stability of the spike protein and its affinity to ACE2. Moreover, following the N501Y mutation secondary structure and folding of the spike protein changed dramatically.


Subject(s)
COVID-19/virology , Mutation, Missense , Pandemics , Point Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Substitution , Angiotensin-Converting Enzyme 2/metabolism , Antigens, Viral/chemistry , Antigens, Viral/immunology , Binding Sites , Computational Biology/methods , Energy Transfer , Epitopes/chemistry , Epitopes/immunology , Evolution, Molecular , Humans , Molecular Docking Simulation , Protein Binding , Protein Conformation , Protein Stability , Receptors, Virus/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Structure-Activity Relationship
20.
Cell Rep ; 37(3): 109869, 2021 10 19.
Article in English | MEDLINE | ID: covidwho-1517084

ABSTRACT

The dramatically expanding coronavirus disease 2019 (COVID-19) needs multiple effective countermeasures. Neutralizing nanobodies (Nbs) are a potential therapeutic strategy for treating COVID-19. Here, we characterize several receptor binding domain (RBD)-specific Nbs isolated from an Nb library derived from an alpaca immunized with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein (S); among them, three Nbs exhibit picomolar potency against SARS-CoV-2 live virus, pseudotyped viruses, and circulating SARS-CoV-2 variants. To improve their efficacy, various configurations of Nbs are engineered. Nb15-NbH-Nb15, a trimer constituted of three Nbs, is constructed to be bispecific for human serum albumin (HSA) and RBD of SARS-CoV-2. Nb15-NbH-Nb15 exhibits single-digit ng/ml neutralization potency against the wild-type and Delta variants of SARS-CoV-2 with a long half-life in vivo. In addition, we show that intranasal administration of Nb15-NbH-Nb15 provides effective protection for both prophylactic and therapeutic purposes against SARS-CoV-2 infection in transgenic hACE2 mice. Nb15-NbH-Nb15 is a potential candidate for both the prevention and treatment of SARS-CoV-2 through respiratory administration.


Subject(s)
Administration, Intranasal , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Bispecific/immunology , COVID-19/immunology , SARS-CoV-2 , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing , Antibodies, Viral/immunology , Camelids, New World , Epitopes/chemistry , Female , Humans , Kinetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neutralization Tests , Protein Binding , Protein Domains , Protein Engineering/methods , Serum Albumin, Human/chemistry , Single-Domain Antibodies , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL